
Automating the Implementation of Kalman
Filter Algorithms

JON WHITTLE
QSS Group/NASA Ames Research Center
and
JOHANN SCHUMANN
RIACS/NASA Ames Research Center

AUTOFILTER is a tool that generates implementations that solve state estimation problems using
Kalman filters. From a high-level, mathematics-based description of a state estimation problem,
AUTOFILTER automatically generates code that computes a statistically optimal estimate using one
or more of a number of well-known variants of the Kalman filter algorithm. The problem descrip-
tion may be given in terms of continuous or discrete, linear or nonlinear process and measurement
dynamics. From this description, AUTOFILTER automates many common solution methods (e.g., lin-
earization, discretization) and generates C or Matlab code fully automatically. AUTOFILTER surpasses
toolkit-based programming approaches for Kalman filters because it requires no low-level program-
ming skills (e.g., to “glue” together library function calls). AUTOFILTER raises the level of discourse
to the mathematics of the problem at hand rather than the details of what algorithms, data struc-
tures, optimizations and so on are required to implement it. An overview of AUTOFILTER is given
along with an example of its practical application to deep space attitude estimation.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.3 [Software Engineering]: Coding Tools and Techniques; D.2.13 [Software Engineering]:
Reusable Software; G.4 [Mathematical Software]—Algorithm design and analysis

General Terms: Algorithm

Additional Key Words and Phrases: Code generation, Kalman filters, state estimation, automatic
programming

1. INTRODUCTION

Once the mathematical models for a state estimation problem have been formu-
lated, there is usually a significant amount of implementation work that has
to be done before those models and their associated estimator can be tested.
This is true even if existing libraries/toolkits are used to support implemen-
tation because such libraries still require “glue” code to be written to allow
the library functions to work together. Testing usually suggests refinements

Authors’ addresses: J. Whittle NASA Ames Research Center, MS 269-2, Moffett Field, CA 94035;
email: {jonathw,schumann}@email.arc.nasa.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0098-3500/04/1200-0434 $5.00

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004, Pages 434–453.

Automating the Implementation of Kalman Filter Algorithms • 435

Fig. 1. An overview of AUTOFILTER.

to the models and/or the estimator that in turn results in additional coding
effort. The goal of the AUTOFILTER project is to develop techniques and tools that
substantially reduce the time and effort needed to develop reliable imple-
mentations of state estimators. AUTOFILTER is a knowledge-based tool that,
given a high-level mathematical description of the process dynamics and mea-
surements, can automatically generate a C or Matlab implementation that
will compute a statistically optimal estimate of a specified state vector un-
der the model assumptions. In particular, AUTOFILTER generates Kalman filter
implementations and has so far been used on a number of applications and
case studies concerning spacecraft attitude estimation and control. AUTOFILTER

surpasses existing coding techniques (including the use of toolkits) for this class
of problems because:

—analysts using AUTOFILTER need not be concerned with low-level implementa-
tion details;

—analysts need not be concerned with some problem solving methods (e.g.,
linearization) because AUTOFILTER carries them out automatically;

—changes in the model require no additional coding because AUTOFILTER just
re-generates code for the updated model.

A Kalman filter [Brown and Hwang 1997] is a recursive algorithm for cal-
culating the best estimate of a state vector, x , based on noisy measurements,
z . The state vector contains variables of interest that will be estimated, for
example, position and velocity. The Kalman filter estimate of this state vector
incorporates knowledge given as a model of the process under analysis and a
model of the relationship between the state vector and the measurements. AUT-
OFILTER generates Kalman filter implementations from a description of these
models and a description of x and z . Figure 1 gives an overview of the AUT-
OFILTER tool. The problem description defines the physical characteristics of the
problem in terms of the process model and measurement model. The process

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

436 • J. Whittle and J. Schumann

model can be defined in the usual way as a differential equation of the form

d
dt

x (t) = f (x (t), t) + g(x (t), t)w(t) (1)

where f , g are functions, x (t) is the state vector, and w(t) is the Gaussian white
process noise, with mean and covariance defined by

E[w(t)] = 0 (2)

E[w(t)wT (t ′)] = Q(t)δ(t − t ′) (3)

where δ(t) is the Dirac delta function.
Assuming measurements arrive at discrete timepoints, the measurement

equation at time tk can be defined in the usual way

zk = h(x k) + v k (4)

where v k is the measurement noise, a discrete Gaussian white noise process
with mean and covariance given by

E[v k] = 0 (5)

E
[
v kv T

k′
] = Rkδkk′ (6)

where δkk′ is the Kronecker delta.
In addition, the problem description contains further information needed for

the filter such as initial process covariance and initial state estimates. Based on
this problem description, AUTOFILTER chooses an appropriate Kalman filter (cur-
rently, the choice is between a standard filter, a linearized filter, an extended
Kalman filter or a parallel bank of filters) and instantiates a generic represen-
tation of that filter. This instantiation may involve significant problem solving
such as transformation from a continuous to a discrete problem formulation or
linearization of a model. The resulting filter implementation can be generated
by AUTOFILTER in an intermediate language that is readily translated into any
sensible language (currently C, C++, and Modula II) for various target systems
(e.g., Matlab or Octave). The process of generating the code is generally faster
than compilation of the generated code and the code can easily be inserted into
a test environment for immediate simulation/testing.

AUTOFILTER has a number of advantages, namely:

—Coding effort is significantly reduced. In order to generate a Kalman filter
implementation, the user need only formulate the usual state and measure-
ment equations. An implementation can then be generated fully automati-
cally. This is in contrast to the use of toolkits where coding is still required
to combine toolkit functions.

—Rapid prototyping becomes easy. Iterations on the models can be made quickly
and easily. Based on simulation or testing, the user can modify the problem
description and regenerate a new implementation which in turn can then be
simulated/tested.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 437

—The design space can be explored quickly and thoroughly. The rapid proto-
typing benefits mean that the analyst has more time to fully explore design
alternatives and variations. Each variation can be generated easily once the
models have been formulated.

—The generated code is highly documented. The generated code is well docu-
mented with the exact steps that were taken to derive the implementation
and the simplifying assumptions that were made. Such documentation is use-
ful for code reviews or communication between analysts and programmers.

—The code can be made to adhere to existing code standards or architectures.
AUTOFILTER can be customized to generate code adhering to certain standards.
An architecture description can be given that is then used to structure the
generated code to fit into that architecture. The use of AUTOFILTER encourages
reuse between projects because an enterprise’s style can be fixed in advance.

The remainder of the article is structured as follows. Section 2 gives an
overview of the design and architecture of the AUTOFILTER tool. Section 3 presents
an application of AUTOFILTER to a deep space attitude estimation problem. Sec-
tion 4 discusses related work and Section 5 concludes.

2. DESCRIPTION OF AUTOFILTER

Figure 2 gives an overview of the various components that make up AUTOFILTER.
In this section, we will describe these elements in detail.

2.1 Input Language

The input language of AUTOFILTER allows the concise specification of the process
model, the measurement model, and other important design information—
a definition is given in the appendix. In order to illustrate the basics of
AUTOFILTER’s input language, let us consider the following simple example of
a state estimation problem for a simple rover, taken from Roumeliotis et al.
[1998]. The rover under consideration is a Pioneer AT rover with four wheels.
The pair of wheels on the left side of the rover are mechanically coupled. Simi-
larly, on the right side. Each side has a rotation encoding sensor, which returns
the current speed of the wheels on that side of the vehicle. Furthermore, there
is a gyro, which can be used to measure the yaw rate. In this example, we use
a very simple process and measurement model that has three state variables
x = (vL, vR , y)T for the speed estimate of the left wheels, the right wheels,
and the estimate of the yaw rate of the chassis, respectively. A straightforward
discrete process model describing the dynamics of the rover can be defined as
follows:

vL

k+1

vR
k+1

yk+1

 =

vL
k

vR
k

−vL
k /l + vR

k /l

 +

w1

w2

w3

with Gaussian white noise wi, where l is the vehicle axis length. The sensors
measure the state variables directly, so the measurement model is trivial and
is given by z = x + v . Figure 3 gives the AUTOFILTER input specification for this

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

438 • J. Whittle and J. Schumann

Fig. 2. AUTOFILTER architecture.

problem. In addition to defining the process and measurement models, the spec-
ification also defines variables, constants, data and estimator characteristics as
described below.

The input language to AUTOFILTER allows the declaration of constants (using
keyword const), input data (keyword data) and datatypes (nat for natural num-
ber, double etc.). Inline comments can be added using the as keyword. Vectors
and matrices can be defined using an ellipsis—for example, the declaration
double x(1..3) declares a 3-vector x whose elements are of type double. Dis-
tributions are declared using the ~ symbol. Index variables can be used to refer
to all elements of a vector or matrix—for example, w(I) ~ gauss(0,1) declares
all elements of w to be Gaussian distributed with zero mean and unit variance.
Assignment is defined using the := operator. The keyword equation set defines
a named set of equations delimited by is and end. The output is defined to be
the estimate from a Kalman filter where this filter is defined by the keyword
estimator.

The process equation for our example (Figure 3) is defined in lines 25–28
and the measurement equation is given in lines 36–39. The process model is
given in discrete form (the notation k is used to denote “at time k”). The initial
estimate is given in lines 19–22. Lines 41–48 describe the Kalman filter that
AUTOFILTER should generate. In particular, it is stated how many iterations of the

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 439

Fig. 3. Rover navigation specification.
.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

440 • J. Whittle and J. Schumann

filter should be executed, the time interval between iterations, and references to
the process and measurement equations and initial conditions are given. Note
that this specification defines a batch-mode processing of measurements (i.e.,
it assumes all observations for all time-steps are available on start-up). This is
specified by defining an observation data matrix, z, in line 32, which contains
all observations. The underscore in lines 37–39 denotes the fact the equations
are independent of the second index of z. Online processing of measurements is
also supported. The example specifies only one estimator. However, AUTOFILTER

allows the specification of multiple estimators and the connections between
them, for example, the definition of a parallel bank of Kalman filters.

2.2 Code Generation

The AUTOFILTER code generator is built on three levels. These levels correspond
to three stages in solving a particular estimation problem. First, a particular
algorithm (or combination of algorithms) that will solve the problem must be
chosen. This is done at the schema-level. For example, AUTOFILTER may decide
on an extended Kalman filter. The result is a high-level representation of the
algorithms chosen.

Many state estimation algorithms involve an element of mathematical solv-
ing. This is done at the solver-level. For example, an extended Kalman filter re-
quires that a linear approximation to a nonlinear process be derived. Finally, the
support-level takes care of low-level code generation tasks that have not been
taken care of elsewhere. These three levels are described in more detail below.

2.2.1 Algorithm Schemas. A schema is a generic representation of a well-
known algorithm. Most generally, it is a high-level description of a program
that captures the essential algorithmic steps but does not necessarily carry out
the computations for each step. In AUTOFILTER, a schema has five parts:

—underlying assumptions of the algorithm;
—applicability conditions that must hold for the schema to be applied;
—a high-level description of the program in the form of a template that describes

the key algorithmic steps;
—the body of the schema, which instantiates the template by calling routines

at the schema-level, solver-level or support-level;
—a blackboard for storing intermediate results that may be needed by other

schemas.

Assumptions are inherent limitations of the algorithm and appear as com-
ments or run-time assertions in the generated code. Applicability conditions
are preconditions that can be used to choose between alternative schemas.
The key difference between assumptions and applicability conditions is that
applicability conditions can be evaluated to see if they are true or false. As-
sumptions, on the other hand, are considered to be true but cannot be shown
to be true given the body of knowledge in the specification. For example, an
assumption for the standard Kalman filter schema is that the process noise is
white. This fact cannot be validated from the specification but is a necessary

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 441

requirement for the use of a Kalman filter. An applicability condition for the
standard Kalman filter would be that the process and measurement models are
linear. The analogous condition for the extended Kalman filter would be that
either the process or measurement model is nonlinear. The linearity condition
can be explicitly checked on the specification. Note that in many applications,
assumptions will in fact be violated: for example, the noise may be almost white.
This is a consequence of the fact that the modeling process is approximate. Ap-
plicability conditions for the chosen schema, however, are never violated in an
application.

Even in the presence of applicability conditions, it is possible that different
schemas can apply to the same problem (e.g., a linearized Kalman filter and ex-
tended Kalman filter can both be applicable to the same problem). This leads to
choice points. During code generation, these choices are explored in a depth-first
manner. Whenever a dead-end is encountered (i.e., an incomplete code fragment
has been generated but no schema is applicable), AUTOFILTER backtracks. This
control regime allows AUTOFILTER to generate multiple program variants for the
same problem.

The algorithm template is described using a simple template programming
language that has the usual programming constructs such as if-statements,
for and while loops, and a series construct that specifies the execution of a
number of statements sequentially. The template may also contain variables,
denoted with a prefix $. When the schema is executed during synthesis, these
variables get instantiated by code fragments. The blackboard is included as a
convenience because some schemas compute intermediate results that are used
by other schemas. Storing these on the blackboard avoids recomputation.

Figure 4 shows an abstraction of the schema for an extended Kalman Filter.
The calls in the body are parameterized over the schema variables so that the
variables can be instantiated during the body calls. Note how the body describes
the essential sequential steps of the algorithm and the template defines what
the resulting generated code will look like.

The schema template sets up the code structure at a high level with
variables that will be instantiated by the schema body. $Local will be in-
stantiated to a series of local variable declarations needed by the extended
Kalman filter (e.g., the declaration of the state transition matrix variable).
$Initial will be instantiated to a series of initializations of these vari-
ables. The main filter loop comes next. The code in $UpdateMeasurements will
get the next set of observations from the input stream. The state transi-
tion matrix and measurement matrix will have been initialized in $Initial.
In $UpdateStateTransition and $UpdateMeasurementMatrix, any elements in
these matrices that have changed since the last iteration are reassigned.
Note that AUTOFILTER only reassigns elements that vary over time. Hence, in
the case of a constant state transition matrix, there is no additional over-
head in assignment. $CalculateGain, $UpdateEstimate, $UpdateCovariance,
$PropagateEstimate, and $PropagateCovariance are the main parts of the
Kalman Filter. For example, in a standard Kalman filter, $CalculateGainwould
implement the matrix equation Kk = P−

k HT
k (Hk P−

k HT
k +Rk)−1. Note that these

variables can be instantiated in a number of different ways depending on the

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

442 • J. Whittle and J. Schumann

Fig. 4. Extended Kalman Filter schema.

type of filter that is being implemented. For example, in an information filter1

the gain expression would instead be calculated using Kk = Pk HT
k R−1

k . In fact,

1An information filter is a Kalman filter variant often used in the case where very little is known
about the process initially. In such cases, the standard formulation of the Kalman filter results in a
division ∞/∞. The information filter avoids this by algebraically reformulating the Kalman filter
equations.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 443

any of the “slots” in the schema template may be instantiated in different ways
by any of the function calls in the schema body. This highlights the fact that
each schema corresponds not to a single algorithm but to a family of related
algorithms. The particular choice of algorithm results from the characteristics
of the problem at hand. The final slot in the template, $StoreOutput outputs the
result of the estimator. By default, only the state estimate is retained and this
is written to an output matrix, although this slot could easily be changed to, for
example, write the process covariance at each iteration to standard output.

The advantage of using schemas to encode algorithmic knowledge rather
than parameterized functions is that schemas encode a family of algorithms
rather than a single algorithm. This allows a class of algorithms with significant
variations within that class to be represented by a single schema. In the case of
Kalman filters, for example, the basic filter, linearized and extended filter can
all be represented by the same schema.

2.2.2 Symbolic Solvers. The solver-level of AUTOFILTER consists of a collec-
tion of symbolic solvers, written as a set of conditional rewrite rules. A con-
ditional rewrite rule C ⇒ L = R can be applied to an expression E with
subexpression L′ if there is a substitution φ for the variables in L such that
φ(L) = L′ and if φ(C) is true. In this case, L′ is replaced by φ(R) to yield a new
expression E ′. By defining a set of such rewrite rules, common problem solving
tasks can be accomplished by exhaustively applying rewrite rules to a given ex-
pression. We assume that for each set of rewrite rules, the order of application
of the rules is irrelevant.2

Some examples of rewrite rule systems used in AUTOFILTER are rules for differ-
entiating an expression, for matrix identities, for linearizing a set of equations
(e.g., by calculating Jacobians), for carrying out various approximations, for
evaluating trigonometric expressions, and so on. Rewrite rules are a good way
of expressing certain kinds of domain knowledge because complex solvers can
quickly and legibly be expressed as rewrites.

AUTOFILTER has a sophisticated rewrite rule engine for applying rewrite rules,
which can, for example, apply rules under different assumptions. This rewrite
engine was written by Bernd Fischer and is inherited from the AUTOBAYES data
analysis code generation system [Fischer et al. 2000].

As a simple example of a rewrite rule, consider the task of approximat-
ing a matrix exponential by a truncated Taylor series. This problem arises
in AUTOFILTER during discretization of a continuous process. The approximation
is easy to write down as a rewrite rule:

is square matrix(A) and rows(A) = n ⇒ exp(A) = In×n + A + 1
2

A2 (7)

Maintenance of these approximations is also made easier through the use of
rewrites—the above approximation can be replaced quickly with a third-order
approximation or augmented with additional rewrites expressing alternative
approximations such as approximation with an inverse Laplacian or numerical
integration.

2We rely on the rule designer to enforce this constraint.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

444 • J. Whittle and J. Schumann

2.2.3 Support Modules. Schemas can be thought of as setting up the high-
level definition of the generated code. Rewrites can then be seen as refining this
definition down a level. The lowest level of definition, however, is typically given
by various support modules. This is necessary in practice because, although it
would be possible to instantiate the templates using only rewrite rules, it would
be inconvenient and inefficient to do this for the many bookkeeping tasks (e.g.,
finding the name of the variable representing the state vector) that need to be
carried out during code generation. The support modules can, in general, be
written in any programming language. In AUTOFILTER, they are written in the
logic programming language Prolog [Clocksin and Mellish 1984].

The example in Section 3 will illustrate how the three levels are applied to
produce a faithful implementation of a model.

2.3 Generated Artifacts

2.3.1 Translation to Programming Languages. During the synthesis
phase, a set of program schemas are instantiated and combined to form the
structural skeleton of the filter implementation. Each of these instantiated
schemas returns a code fragment in AUTOFILTER’s intermediate language. This
intermediate language is a simple procedural language with additional oper-
ators for compact handling of sums, vectors and matrices. This language is
abstract and general enough to be used within the synthesis schemas, yet
it is close enough to a standard procedural programming language to al-
low for a straight-forward generation of the final code. The AUTOFILTER code
translators have been designed in a modular way such that the code gen-
erator can be easily adapted toward a specific target language or environ-
ment. We have developed intermediate language to code translators for several
target systems and languages: C for Matlab (MEX interface), stand-alone C
for embedded environments with various run-time libraries, C++ for the Oc-
tave [2003] system, and Modula II. We can also generate (interpreted) Matlab
code.

Depending on the selected target system, the translator converts the high-
level operators (like a matrix multiplication) into operations supported by the
target system, which, for example can be a C++ method, a for-loop, or a call to
a library.

2.3.2 Correctness. Any code generator should be concerned with the cor-
rectness of the code generated. This is particularly true for state estimation
code, which is a safety critical component of flight software. Although outside
the scope of this article, AUTOFILTER has been augmented with a number of tech-
niques for verifying the correctness of the generated code. These techniques fall
into two broad categories.

Firstly, we have developed methods for guaranteeing the correctness of the
algorithm used in the generated code [Rosu and Whittle 2002a, 2002b]. This
is important because AUTOFILTER may generate non-standard variants of the
Kalman filter, and it may not be obvious that these variants are indeed opti-
mal estimators. By providing machine-checked proofs of the optimality of the
algorithm, AUTOFILTER provides assurance that this is the case.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 445

Secondly, we are using property verification. In this approach, a set of
safety properties is automatically checked for each statement of the code. We
have developed a subsystem for AUTOFILTER, which can automatically check
programming-language specific safety properties, like array-bounds safety,
operator-definedness, or variable-initialization-before-use [Whalen et al. 2002].

3. APPLICATION TO DEEP SPACE ATTITUDE ESTIMATION

AUTOFILTER is currently at the research prototype stage—it has been used on
a number of real-world applications that have shown that its use is feasible
in practice. We describe one of those applications here. The application was an
“after-the-fact” case study in the sense that code for the application had already
been produced by the original code developers.

Deep Space I (DS1) is a deep space probe managed from the Jet Propulsion
Laboratory (JPL) as a vehicle for testing a range of experimental NASA tech-
nologies under flight conditions. It was launched in October 1998 and retired in
December 2001. Although the Deep Space I mission is now over, the spacecraft
continues to operate in deep space.

In the summer of 2002, a case study was undertaken in which AUTOFILTER

was used to recreate the Kalman filter portion of the DS1 attitude estimator
implementation. AUTOFILTER was used to specify the mathematical models for the
attitude estimator and around 400 lines of C code were automatically generated
and then integrated and tested in the Autonomy Lab, a JPL testbed for deep
space missions.

In this section, we present the mathematical models used to specify the DS1
attitude estimator. These models are the same as those used in the original
DS1 estimator. This case study is limited to the parts of the code for which
AUTOFILTER is suited, namely the core Kalman filter loop. Real-time issues, co-
ordinate system transformations, and so on are assumed to be taken care of
outside the filter and are thus not considered.

DS1 estimates attitude using a combination of an IMU (Inertial Measure-
ment Unit) and a stellar reference unit3 (SRU). The estimator can be in one
of three modes—IMU only, SRU only or IMU and SRU. We will only consider
the third mode in this article. In this mode, the gyro outputs from the IMU are
augmented with readings from the SRU to provide a more accurate estimate
of the attitude of the spacecraft. The SRU outputs a quaternion representa-
tion of the spacecraft attitude and this quaternion is used to augment the IMU
readings. The design of the DS1 filter closely followed that given in Section
XI of Lefferts et al. [1982]. In this example, quaternions were used to repre-
sent points and directions in space. Although computationally slightly more
complex, this representation has the advantage that a transformation between
coordinate systems does not exhibit any singularities (as can occur when Euler
angles are used).

In the rest of this section, we show how the DS1 attitude estimator was
modeled in AUTOFILTER and discuss the code generation process. Note that rather
than estimating the full quaternion (representing the spacecraft attitude), the

3More commonly known as a star tracker.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

446 • J. Whittle and J. Schumann

Kalman filter estimates the error in a given base quaternion. This error is
represented as an incremental quaternion, which must be composed with the
base quaternion in order to obtain the true quaternion. When the filter starts,
the initial base quaternion is given. The filter updates the base quaternion
according to its error estimate on each iteration and the new base quaternion
is used in the following iteration. As usual, the error quaternion is defined as

q̄ =
(

q
q4

)
(8)

where q = n̂ sin(δθ/2) and q4 = cos(δθ/2) and δθ is the incremental rotation
about an axis n̂. Since δθ is small, q ≈ n̂ (δθ/2) and q4 ≈ 1, so the fourth
component of the error quaternion need not be estimated.

The complete specification in AUTOFILTER is given in Figure 5. In total, there
are six state variables: δθi, 1 ≤ i ≤ 3 and the three gyro biases bi, 1 ≤ i ≤ 3.
The IMU provides a 3-vector output, an attitude rate, u. The process model is
taken from Lefferts et al. [1982], equations (48), (51), and (135). Note that DS1
uses this model in the covariance propagation but state propagation instead
uses the IMU data to approximate the model. From Lefferts et al. [1982], the
vector equations for describing the process model are

ω = u − b − η1 (9)

d
dt

b = η2 (10)

d
dt

δθ = −ω̂ × δθ − (b − b̂ + η1). (11)

w is the true angular rate of the spacecraft, which according to equation (9)
is given by the gyro output minus the gyro biases and unbiased white noise
η1 . Equation (10) represents the gyro biases as a random walk where η2 is
unbiased white noise. Equation (11) describes how the incremental angles δθ

change over time—see Lefferts et al. [1982] for details—where ŵ = u− b̂ and b̂
is the estimated gyro bias. In the Kalman filter context, b̂ is taken to be the best
estimate of the gyro bias from the previous iteration of the filter. Accordingly,
in Figure 5, b̂ in lines 16–24 denotes the estimate of b obtained in the previous
time step of the filter run. Lines 14–24, give the process model in AUTOFILTER

syntax.
The SRU measurements are modeled as a 3-vector, z , and measurement noise

is given by v . The actual DS1 SRU produces a full quaternion. In order to relate
this quaternion to the error components of the incremental quaternion, δθi, the
estimated full quaternion is needed. Since this is not available in the AUTOFILTER

DS1 specification, we assume the SRU full quaternion has been preprocessed to
produce delta angles representing the error quaternion before being sent to the
filter. In this case, as can be seen in Figure 5 (lines 33–36), the measurement
matrix H turns out to be [I3×3 03×3].

Note that in the original DS1 code, the “preprocessing” is taken care of within
the filter loop by maintaining a current quaternion estimate of the attitude. The

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 447

Fig. 5. Deep space I attitude estimation specification.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

448 • J. Whittle and J. Schumann

measurement, z , is then the correction in the attitude that should be applied
to the quaternion estimate of the attitude assuming the measured quaternion
from the SRU is the true value (see (118) in Lefferts et al. [1982]): z = qSRU ⊗
q ∗

est, where ⊗ is quaternion multiplication and ∗ is quaternion inverse. Using
AUTOFILTER, we take a slightly different approach in which the preprocessing is
done outside the filter.

Given the specification in the previous section, AUTOFILTER generates code
that implements the corresponding extended Kalman filter. AUTOFILTER detects
that the problem is nonlinear and applies the appropriate algorithm schema.
This involves linearizing the process model and since the process model is also
continuous, a discretization step takes place. In essence, the process in Lefferts
et al. [1982, pp. 425–6] takes place automatically within AUTOFILTER. Briefly, the
process model is (automatically) linearized, resulting in

d
dt

�x = F �x + w (12)

where x =
(

δq
b

)
, w =

(
η1
η2

)
and F =

(−ω̂ × −I3×3
03×3 03×3

)
. a× is the standard

skew-symmetric matrix generated from the 3-vector a:

a× =

 0 −a3 a2

a3 0 −a1
−a2 a1 0

 (13)

As usual, the linearized process model for an extended Kalman filter considers
state vector incrementals, �x , rather than the full state vector.

To obtain the state transition matrix, �, equation (12) must be discretized.
This is done in AUTOFILTER by approximating4 the solution of (12) by the trun-
cated Taylor series expansion of eF�t . The order of the expansion can be se-
lected during synthesis time. In our case study we used 2nd and 5th order
Taylor series. Truncated Taylor series are just one of several approximations
that AUTOFILTER could have used.

From the specification in Figure 5, AUTOFILTER generates 400 lines of C code
fully automatically with calls to JPL’s own library for matrix operations. This
library contains simple subroutines for matrix addition, subtraction, transpos-
ing, multiplication, and calculation of a 3×3 matrix inverse. AUTOFILTER can
also generate its own matrix operation code, in which case the code generated
amounts to 780 lines. The generated code was executed on a JPL testbed.

4. RELATED WORK AND DISCUSSION

A number of software packages exist for Kalman filtering—for example, the
Matlab function kalman(), Murphy’s Kalman filter toolbox [Murphy 2002],
ReBEL [van der Merwe and Wan 2003], KALMTOOL [Noorgaard 2002], as
well as libraries written in Fortran, C, Matlab and so on. It is important to
realize, however, that AUTOFILTER is more than yet another toolbox. Toolkits pro-
vide concrete implementations of particular algorithms. The user must spend

4A standard approximation—see Grewal and Andrews [1993] for details.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 449

a good deal of time understanding the functions in the toolkit and how they in-
teroperate. Low-level coding is still required to implement a filter because the
functions must be “glued” together. In addition, many toolkits only deal with
simple versions of state estimation problems, for example, for linear systems
only.

We consider the following as the main arguments as to why AUTOFILTER pro-
vides additional functionalities over Kalman filter toolboxes and pre-defined
functions:

—Toolbox functions hard-code a specific implementation of a specific algorithm.
AUTOFILTER, on the other hand, is designed to generate families of algorithms
because the algorithms are encoded as schemas. This allows for much greater
range and flexibility in the code generated.

—AUTOFILTER raises the level of discourse to that of the problem description
rather than how to glue together toolbox functions.

—AUTOFILTER is more easily customizable. Toolboxes are written in a specific
language and the source code for the functions may not be available. Since
AUTOFILTER generates code in a generic intermediate programming language,
it can be translated into many different programming languages, and the
source code is available for hand modification if necessary.

—Toolboxes are purely interpretive systems and do not generate programs.

We believe the strongest argument in favor of AUTOFILTER over toolboxes is
that AUTOFILTER provides so many variations of basic algorithms. This makes it
very easy to rapidly prototype systems without ever thinking of implementa-
tion details. For example, the user may start off with a linear representation
of a problem and use AUTOFILTER to generate code. Minor modifications to the
problem description may make the problem nonlinear. The user can just re-
run AUTOFILTER and have code returned that is significantly more complicated
than the previous version of the code despite the fact that the specification
changed only slightly. Using a toolkit-based approach, the original implemen-
tation would have to be modified significantly by hand to replace the original
linear filter function by a nonlinear version and to introduce other functions
such as a linearization routine. Another example is if the specification admits
a constant state transition matrix. In the generated implementation, the ma-
trix will be initialized once and never be recalculated. By changing the process
model slightly, the state transition matrix may become time-varying. In this
case, AUTOFILTER would generate code that updates the time-varying elements
of the matrix on each iteration but leaves constant elements untouched. In
this way, AUTOFILTER has optimized the calculation of the state transition ma-
trix. Toolboxes would most likely just recalculate all of the matrix on each
iteration.

AUTOFILTER is a close sister of the AUTOBAYES system [Fischer et al. 2000], which
generates code for data analysis problems. In fact, the two systems share much
of the same infrastructure, including the rewrite engine and schema-based
approach. Where they differ is in the knowledge encoded in the schemas, the
rewrite rules, and the support modules. Whereas AUTOFILTER has schemas for

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

450 • J. Whittle and J. Schumann

Kalman filters and rewrite rules for linearization, AUTOBAYES has schemas for
EM and clustering algorithms.

AUTOFILTER is related to other systems that generate code for a particular class
of mathematical problems. In spirit it is similar to systems such as SciNapse
[Akers et al. 1997], a problem solving environment for partial differential equa-
tions, or Ellman’s systems for generating numerical simulation programs from
differential equations [Ellman and Murata 1998] and physics-based animation
programs from a specification of analytical dynamics [Ellman et al. 2002]. It
differs mainly in its schema-based approach to code generation.

5. CONCLUSIONS AND FUTURE WORK

In this article, we have presented AUTOFILTER, a code generation system to au-
tomatically synthesize Matlab/C/C++ code for state estimation from a compact
and concise specification. Using a schema based approach combined with a pow-
erful symbolic mathematics module, AUTOFILTER can automatically convert the
process and measurement model (given as a set of differential equations) into a
Kalman filter algorithm. We have demonstrated the capabilities of AUTOFILTER

on a case study within the realm of NASA: the state-estimation module for the
Deep Space I spacecraft. AUTOFILTER can produce code that performs the appro-
priate state estimation task, and which easily can be incorporated into a target
software architecture.

One extension area for AUTOFILTER would be to incorporate recent improve-
ments to the Kalman filter algorithm, for example, an unscented Kalman filter
[Wan and van der Merwe 2000]. Current specifications rely on the fact that
process and measurement noise is a white Gaussian noise. This assumption is
a direct prerequisite in order to instantiate a Kalman filter. We are planning to
extend AUTOFILTER such that it can handle cases with non-Gaussian noises. In
such cases, modern filter algorithms, for example, particle filter [Doucet et al.
2001], will automatically be generated.

Another area of extension will address the handling of sensor data. In most
real applications, the state estimation module contains code to deal with sen-
sor failures or to handle multiple sensor modes (e.g., used for different stages
of a descent and landing process). A conservative extension of the AUTOFILTER

specification language will allow us to specify sensor failures and sensor modes.
State estimation is a safety critical component of most flight software. Any

error in specification, design, or implementation can lead to mission failures or
even loss of life. Therefore, we are currently extending AUTOFILTER to support
certification and review of the generated code. This means that it is not suffi-
cient to just synthesize the code. Rather, we are developing a set of extensions
for the synthesis system that can support a rigorous code review:

—the synthesized code is highly commented. In the current version, roughly
one third of the lines of code are automatically generated comments. The
structure and layout of the code is designed in such a way that the code
reviewer can understand the code and easily relate it to the specification.
An HTML version of the code can also be generated. It supports interactive
navigation through the code.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 451

—AUTOFILTER can generate a detailed design document. This design document
combines all important pieces of information that show up during the syn-
thesis process. Besides hyper-links to the specification and all generated ar-
tifacts (code, log files, etc), this document gives a detailed description of the
interface and explicitly calls out detailed assumptions and design decisions.

We are confident that with an extended domain coverage and with certifi-
cation support, the AUTOFILTER system will be a valuable tool for many state
estimation problems in aircraft or spacecraft design or in robotics.

APPENDIX

A. AUTOFILTER SPECIFICATION LANGUAGE

The input language of AUTOFILTER has been designed to be close to the notations
used by domain experts (i.e., vectors, matrices, and differential equations), yet it
allows concise specifications of state estimation problems. An AUTOFILTER spec-
ification consists of 5 individual parts: declarations, specification of the process
and measurement models, details about software architecture, and the synthesis
goal. In the following, we give an abbreviated formal definition of the language.

A.1 Declarations

In this part of the AUTOFILTER specification, all constants and variables are de-
clared. Each declared variable (DECL) is a scalar, vector, or matrix of the basic
data types nat, int, or double. For vectors and matrices, the dimensions are
specified with a lower and upper bound. These bounds can be arbitrary expres-
sions, for example, double m(0..10, 0..n-1). Variables and constants can be
explicitly initialized. Some AUTOFILTER variables are statistical variables that
have a distribution, for example, the process noise. The Gaussian distribution
is given by a mean (usually 0) and the standard deviation as, for example z ∼
gauss(0, r). IND are all-quantified specification variables to denote generic in-
dices. x(I) ∼ gauss(0, sigma(I) means that each element of the vector x has
a zero-mean Gaussian distribution with a standard deviation corresponding to
the vector element sigma(I).

DECL ::= [const | data] TYPE VAR [:= EXPR] [as COMMENT]

| IVAR ~ gauss(EXPR, EXPR)

TYPE ::= nat | int | double

VAR ::= NAME | NAME(EXPR .. EXPR) | NAME(EXPR .. EXPR, EXPR .. EXPR)

IVAR ::= NAME | NAME(IND) | NAME(IND, IND)

COMMENT ::= STRING+

Expressions EXPR are scalar arithmetic expressions; vector and matrix ac-
cesses are done in a FORTRAN-style: NAME(EXPR), and NAME(EXPR, EXPR),
respectively.

A.2 Process and Measurement Models

Both process and measurement models can be specified in various ways. The
process model defines how the (noisy) plant, defined by its state vector, develops

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

452 • J. Whittle and J. Schumann

over time; the measurement model how the measurements relate to the state
vector. These models are thus given as a set of equations over the state vectors.
For continuous models, differential equations (ẋ = F(x)) are used; a discrete
model is given as a set of difference equations (xk+1 = F(xk)).

MODEL_DEF ::= equation_set NAME is DISC_EQU+ | CONT_EQU+ end

DISC_EQU ::= NAME(EXPR)_k+1 := EXPR

CONT_EQU ::= d/dt NAME(EXPR) := EXPR

A.3 Control, Interfaces, and Synthesis Goal

This section of an AUTOFILTER specification contains concise information on the
architecture of the desired filter, on the interface, and additional information
(e.g., on the filter initialization). The name of the Kalman filter is given after the
estimator keyword. Then various properties of the filter are specified. Below is
a list of the most important properties.

CONTROL ::= estimator NAME SET_ATTR+ SYNTH_GOAL

SET_ATTR ::=

NAME .steps := EXPR % number of filter execution steps

| NAME .process_eqs := NAME % name of process equation set

| NAME .measurement_eqs := NAME % name of measurement equation set

| NAME .initials := NAME(IND) % initial values state vector

| NAME .initial_covariance := EXPR % initial covariance matrix

SYNTH_GOAL ::= output FNAME

FNAME ::= NAME | NAME par FNAME

The synthesis goal output finally triggers the synthesis of the entire Kalman
filter with name FNAME. The desired output may be a single filter or a number
of filters running in parallel (defined by par). The full language also supports
the definition of operating modes in which different filters run in each mode,
but this is not shown here. Also not shown are the language constructs for
specifying how the output interfaces to the environment (which may involve
parameter handling and separation of filter steps into separate functions).

ACKNOWLEDGMENTS

The authors would like to thank staff at JPL, Harry Balian and Abdullah Al-
jabri, who provided the case study in Section 3; Tom Pressburger who assisted
with checking the AUTOFILTER generated code and in testing for the DS1 case
study; and Ewen Denney, Pramod Gupta and Julian Richardson for comments
on the article.

REFERENCES

AKERS, R., KANT, E., RANDALL, C., STEINBERG, S., AND YOUNG, R. 1997. SciNapse: A problem-solving
environment for partial differential equations. IEEE Comp. Sci. Eng. 4, 3, 32–42.

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

Automating the Implementation of Kalman Filter Algorithms • 453

BROWN, R. G. AND HWANG, P. 1997. Introduction to Random Signals and Applied Kalman Filtering.
John Wiley & Sons.

CLOCKSIN, W. F. AND MELLISH, C. S. 1984. Programming in Prolog. Springer Verlag.
DOUCET, A., DE FREITAS, N., AND GORDON, N. 2001. Sequential Monte Carlo Methods in Practice.

Springer Verlag.
ELLMAN, T., DEAK, R., AND FOTINATOS, J. 2002. Knowledge-based synthesis of numerical simulation

programs for rigid-body in physics based animation. In The 17th IEEE International Conference
on Automated Software Engineering. IEEE Computer Society.

ELLMAN, T. AND MURATA, T. 1998. Deductive synthesis of numerical simulation programs from
algebraic and ordinary differential equations. In The 13th IEEE International Conference on
Automated Software Engineering. IEEE Computer Society.

FISCHER, B., SCHUMANN, J., AND PRESSBURGER, T. 2000. Generating data analysis programs from
statistical models. In Workshop on Semantics, Applications, and Implementation of Program
Generation, W. Taha, Ed. Springer, 212–229.

GREWAL, M. AND ANDREWS, A. 1993. Kalman filtering: Theory and Practice. Prentice Hall.
LEFFERTS, E., MARKLEY, F., AND SHUSTER, M. 1982. Kalman filtering for spacecraft attitude esti-

mation. J. Guidance and Control 5, 5, 417–429.
MURPHY, K. 2002. Kalman filter toolbox http://www.ai.mit.edu/˜murphyk/software/kalman/
kalman.html.

NOORGAARD, M. 2002. The KALMTOOL toolbox: http://www.iau.dtu.dk/research/control/

kalmtool.html.
Octave 2003. GNU Octave http://www.octave.org.
ROSU, G. AND WHITTLE, J. 2002a. Towards certifying domain specific properties of synthesized

code. In Verification and Computational Logic (VCL02). Pittsburgh, PA.
ROSU, G. AND WHITTLE, J. 2002b. Towards certifying domain specific properties of synthesized

code—extended abstract. In Proceedings of the Conference on Automated Software Engineering
(ASE02). Edinburgh, UK.

ROUMELIOTIS, S., SUKHATME, G., AND BEKEY, G. 1998. Fault detection and isolation in a mobile robot
using multiple-model estimation. In IEEE International Conference on Robotics and Automation.
IEEE Computer Society, 2223–2228.

VAN DER MERWE, R. AND WAN, E. 2003. ReBEL: Recursive Bayesian estimation library
http://choosh.ece.ogi.edu/rebel/index.html.

WAN, E. AND VAN DER MERWE, R. 2000. The Unscented Kalman filter for nonlinear estimation. In
Proceedings of 2000 Symposium on Adaptive Systems for Signal Processing, Communication and
Control (AS-SPCC).

WHALEN, M., SCHUMANN, J., AND FISCHER, B. 2002. Synthesizing certified code. In Formal Methods
Europe. Springer, 431–450.

Received April 2003; revised March 2004; accepted June 2004

ACM Transactions on Mathematical Software, Vol. 30, No. 4, December 2004.

